A Comparison Of Turbulence Models In Computing
Multi-Element Airfoil Flows

Stuart E. Rogers
NASA Ames Research Center, Moffett Field, CA 94035-1000, USA

Florian Menter
Eloret Institute, Sunnyvale, CA

Paul A. Durbin
Center for Turbulence Research, Stanford University

Nagi N. Mansour
NASA Ames Research Center, Moffett Field, CA 94035-1000, USA

ATAA Paper 94-0291



A Comparison Of Turbulence Models In Computing Multi-Element Airfoil Flows

Stuart E. Rogers*
NASA Ames Research Center, Moffett Field, CA

Florian Menter!
Eloret Institute, Sunnyvale, CA

Paul A. Durbint
Center for Turbulence Research, Stanford University

Nagi N. Mansour?
NASA Ames Research Center, Moffett Field, CA

Abstract

Four different turbulence models are used to compute
the flow over a three-element airfoil configuration. These
models are the one-equation Baldwin-Barth model, the
one-equation Spalart-Allmaras model, a two-equation k—w
model, and a new one-equation Durbin-Mansour model.
The flow is computed using the INS2D two-dimensional
incompressible Navier-Stokes solver. An overset Chimera
grid approach is utilized. Grid resolution tests are pre-
sented, and manual solution-adaptation of the grid was
performed. The performance of each of the models is eval-
uated for test cases involving different angles-of-attack,
Reynolds numbers, and flap riggings. The resulting surface
pressure coefficients, skin friction, velocity profiles, and lift,
drag, and moment coefficients are compared with experi-
mental data. The models produce very similar results in
most cases. Excellent agreement between computational
and experimental surface pressures was observed, but only
moderately good agreement was seen in the velocity profile
data. In general, the difference between the predictions of
the different models was less than the difference between
the computational and experimental data.

Introduction

High-lift aerodynamics has received much attention in
the last few years. A search for better computational and
experimental tools has led to a number of conferences and
workshops focusing on high-lift problems. A large number
of papers on computational and experimental high-lift were
presented at the 1992 AGARD Fluid Dynamics Panel
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Symposium® and at the Fifth Symposium on Numerical
and Physical Aspects of Aerodynamic Flows.? High-lift
workshops have been sponsored by NASA in 1991 at Ames
Research Center, and in 1993 at Langley Research Cen-
ter. It has become clear that there is still room for im-
provement in both computational methods and experimen-
tal databases for analyzing multi-element airfoil and wing
flow fields. Computational results have shown that turbu-
lence effects dominate these flows and that solutions to the
(Reynolds-averaged) Navier-Stokes equations are required.
Because of this, turbulence modeling is a pacing item in
the computation of the flow over multi-element airfoils.
Recent papers®* have shown some comparisons between
different turbulence models, but these studies have been
far from complete due to the lack of detailed experimen-
tal measurements. Recent experimental works,® however,
have provided a more detailed set of data for multi-element
airfoil flows. This includes surface pressure, skin friction,
and velocity profiles, as well as the section characteristics
of lift, drag, and pitching moment.

The current work performs a detailed comparison of sev-
eral turbulence models using these experimental measure-
ments and a well established flow solver and grid genera-
tion approach. The flow solver is the INS2D code. It has
been utilized with success in solving multi-element airfoil
flows in previous studies.® As in these previous works, the
Chimera overlaid grid approach is utilized here. Due to the
complex, multi-body geometries of interest in high-lift, al-
gebraic turbulence models are inadequate. The turbulence
models implemented here utilize one or more field equa-
tions which can be solved in the same manner as the mean
flow equations. In the following sections, a brief descrip-
tion of the flow solver is given, followed by a description of
the turbulence models included in this study. Computed
results for the flow over a three-element airfoil are then
presented.

Flow Solver

The flow calculations are performed with the INS2D
flow code.”® This code solves the incompressible Navier-
Stokes equations with an artificial compressibility method.
The convective fluxes are differenced using a third-order,



upwind-biased, flux-difference splitting scheme. The equa-
tions are solved by implicit line-relaxation sweeps. The
finite-difference code accepts structured grids which can
have either single or multiple zones in generalized curvi-
linear coordinates. For connectivity, the zones must have
some type of overlap, either pointwise continuous or ran-
dom. The line-relaxation sweeps are performed sequen-
tially through each zone such that conditions at the zonal
boundaries are updated implicitly during the sweeping pro-
cess. The result is a robust and efficient flow solver with
fast convergence.

Turbulence Models

Four different turbulence models are used in the com-
putation of the flow over a three-element airfoil. The tur-
bulence models included in this study are the one-equation
models of Baldwin and Barth® (BB), of Spalart and
Allmaras'® (SA), and of Durbin et. al.11 (DM), as well as
a two-equation k — w shear-stress transport (SST) model.
This model was developed by Menter,!3~15 based on the
k — w model of Wilcox!? and the standard k& — ¢ model.
These models are implemented in the flow code in a mod-
ular; uncoupled fashion, and are all capable of computing
flows on multiple-zone grids. The equations for the turbu-
lence models are presented in this section for the case of
incompressible, constant density flow.

Baldwin-Barth Model

The BB model is derived from a simplified form of the
standard k — ¢ model equations. The model solves one
transport equation for the turbulent Reynolds number RT,
which is related to the eddy viscosity v;. Transition from
laminar to turbulent flow is introduced by multiplying the
turbulence production term P in the equation by a func-
tion whose range is from zero to one. The function is zero
upstream of a user-defined transition point. At that point,
the function is exponentially increased to a value of one
over two or three grid points. The transport equation used
by the BB model is given by
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where z; = x,y, and U; = u, v (the cartesian velocity com-
ponents) for i=1,2, respectively. The y* wall coordinate is
given by
Tw/p
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where 7, is the shear stress at the nearest wall grid point
and y is the distance to that point. The constants used in
the model are given by

k=041, ¢, =12
e, = 2.0, ¢, =0.09
At =26, AY =10

At a no-slip wall boundary, Ry is set to zero. At an
outflow boundary and at slip-wall boundaries, the normal
derivative of Ry is set to zero.

Spalart-Allmaras Model

The SA model solves one transport equation for a non-
dimensional eddy viscosity variable xy. The SA equation is
very similar to that of the BB model, the primary differ-
ence being the addition of a non-viscous destruction term
that depends on the distance to the wall. It also includes
a more sophisticated transition model which provides a
smooth laminar to turbulent transition at points specified
by the user. The eddy viscosity is given by

vy = vx fo1
3
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The transport equation for y is given by
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and where S is the magnitude of the vorticity, and d is the
distance to the closest wall. The function f, involved in
the destruction term is given by
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The functions f;; and f;2 involved in the transition terms
are given by
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where d; is the distance from the field point to the trip
point (which is on a wall); w; is the wall vorticity at the
trip; AU is the difference between the velocity at the field
point and that at the trip; and Az, is the grid spacing
along the wall at the trip.

The constants in the model are given by

c=2/3, k=041

cp1 = 0.1355, cpp = 0.622
cw1 = ey /k:+ (14 cpo)/o
cw2 = 0.3, cw3=2.0

cy1 =71.1, ¢;1 = 1.0

ci2 = 2.0, ¢33 =1.2

ci4 = 0.5

At a no-slip wall boundary, x = 0. At an outflow boundary
and at slip wall boundaries, the normal derivative of y is
set to zero.

k — w SST Model

The SST model is a two-equation £ — w model recently
developed by Menter!3 for aecrodynamic applications. It is
based on the earlier & — w model of Wilcox,'? which was
found to perform quite well in a study of various adverse
pressure gradient flows performed by Menter.'* However,
Menter!® also showed that this model is very sensitive to
the specification of freestream values for w. The current
formulation of the model*3 removes the freestream depen-
dency with a zonal approach which automatically switches
from the Wilcox model in the near wall region to an equiv-
alent of the & — ¢ model'® away from the wall and in free
shear layers. In order to improve the sensitivity of the
model to adverse pressure gradients, Menter!3 introduced
a modification to the definition of the eddy-viscosity that
accounts for the transport of the principal turbulent shear

stress. The modification is based on Bradshaw’s assump-
tion that the principal shear stress is proportional to the
turbulent kinetic energy over most of the boundary layer.
Transition from laminar to turbulent flow is implemented
in the same manner as the BB model.

The transport equations for £ and w are given by
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where €2 is the magnitude of the vorticity. The constants
in the model are blended using the following, where ¢ rep-
resents one of the constants

¢=Fig1+ (1 —F1)¢s

where the ¢; constants are from the Wilcox & — w model,
with an adjustment to o,1:

or = 0.85, g1 =05
B = 0.075, B* =0.09
k=041, 7 = B/8 — o1k’ /B

and the ¢, constants are from the Jones-Launder k — €
model:

Tun = 0.856
B = 0.0828, B* = 0.09

k=041, v5 = B2/8" — owar®/\/5*
The blending function Fj is defined as

Oro = 1.0,

Fy = tanh(arg?})

: VEk 5000\ 4o,k
arg; = min | max
g1 0.09wy’ y2w | CDpoy?
where y is the distance to the closest no-slip surface, and

C Dy, is the positive component of the cross-diffusion term
in Eq. (4):

1
C Dy, = max (2%2—% Vw, 1x 10—20)
W

The eddy-viscosity is defined as
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where a; = 0.31 and F5 is given by

Fy = tanh(arg3)
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At a no-slip wall, the boundary conditions are ¥ = 0 and

6v
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where Ay is the distance to the next grid point away from
a wall. At outflow boundaries a zero gradient is specified.

Durbin-Mansour Model

The DM model solves one transport equation for the
eddy viscosity. It is similar to the BB model except that
it uses an elliptic relaxation equation to avoid the need
for damping functions, and also does not need to prescribe
the distance to the closest wall. Transition from laminar
to turbulent flow is implemented in the same fashion as
the BB model.

The transport equation for the eddy viscosity is given
by:

Dv v
7}: =V(v+v)Vvi + P, — 3| S| _C4L_tz ()
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and the elliptic relaxation equation for the production term
is given by

L2V?P, — P, = es|Vuy|* — |S|vy (6)

where
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Instead of solving for the length scales as a function of the
distance from the nearest surface as in previous models,
they are formed from local gradients of the flow properties:
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The constants used in the model are given by

Cy = 082, Cq = 0.2
g =335, ¢, =125
cm = 1.0, & =0.405
1— Co Cq
— 1 — =
€ K2 + 1+ ke,

The boundary conditions used on a no-slip surface with
unit normal n are

ytzﬁ-Vm:O

and at an outflow boundary a zero gradient is specified.

Geometry and Grid

The three-element configuration used in this study is a
McDonnell-Douglas airfoil which was used at the recent
high-lift workshop CFD challenge at NASA Langley. This
configuration was the subject of an experimental study
performed by Chin et al.’ The experimental measurements
include surface pressure, skin friction, and velocity profiles;
this comprehensive data base makes the present study pos-
sible. Two configurations, A and B, were used, each with
a 30 degree slat deflection and a 30 degree flap deflection.
The geometries differed only in their flap rigging: configu-
ration A has a slightly smaller flap gap than configuration
B. Velocity profiles were measured in the experiment at 9
different survey stations along the top surface of the main
element and the flap. Figure 1 shows the locations of these
stations, as well as the two different flap positions of ge-
ometry A and geometry B.

“

Fig. 1 Geometry of the three-element airfoil and
velocity survey station locations.
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Fig. 2 Grids around the three-element airfoil.

Figure 2 shows the grids used around configuration A.
Only every other grid line in each direction is shown for
clarity. A total of 68,000 grid points and six zones were
used: a 121x41 c-grid around the slat (top of Fig. 2); a
321x101 c-grid around the main element (near field shown
in middle of Fig. 2); a 141x51 c-grid around the flap (top



of Fig. 2); a 41x31 h-grid in the wake of the flap (bot-
tom of Fig. 2); a 131x61 h-grid extending from the main
elements’ flap cove to the downstream far-field (bottom
of Fig. 2); and a 141x101 embedded grid above the flap
(middle of Fig. 2). The normal wall spacing for all grids
is 2 x 1075 chords. The overlaid chimera scheme allows
individual grids to be generated for each airfoil element.
When the grid for one element intersects another airfoil el-
ement, a hole is cut to remove grid points lying inside the
element. This creates a hole boundary. The fringe-point
variables on the hole boundaries are updated by interpo-
lating the value of the dependent variables from interior
points of neighboring grids. Similarly, the variables on
the outer boundaries of all but the main-element grid are
updated using interpolation of dependent variables from
neighboring grids.

The top and bottom wind-tunnel walls are included in
the geometry; the test section is 4.09 chords in height. The
c-grid which encompasses the main element extends to and
conforms to the wind-tunnel walls. A slip-wall boundary
condition is applied at these wind-tunnel wall grid points.
A comparison was made between computations with the
wind-tunnel wall boundaries and with a free-air far-field
boundary. This comparison was made using geometry A
and a Reynolds number of 9 million, and the computa-
tions used the BB model. The grid used in the free-air
case has an outer boundary approximately 15 chords from
the airfoil, and uses a free-air boundary condition which
matches the circulation to that of the near-field. The grids
used here consisted of five zones and had a total of 83,000
points. The difference in the lift coefficient (C; ) between
the wind-tunnel wall and free-air boundaries is plotted for
angles of attack of 8, 16, and 21 degrees in Fig. 3. This
figure shows a linear increase in the difference in C; with
angle of attack. Although not shown here, the addition of
the wind-tunnel wall boundaries does not change the shape
of the computed velocity profiles, but does increase the
edge velocity, especially at the upstream profile stations.
The station one edge velocity increases by approximately
2.3 percent for an angle of attack of 21 degrees, giving it
better agreement with the experiment.

In previous work? a grid resolution study was performed
for a similar three-element airfoil configuration, using up
to 87,000 grid points. This previous study compared sur-
face pressure coefficient (C), ) and integrated lift values.
For the current study, several levels of grid resolution were
tested; velocity profiles were compared for several cases.
This was done for geometry A at 8.0 and 21.0 degrees
angle-of-attack, using the SA model. A fine grid was gen-
erated using 213,000 points and wall normal spacing of
1.0 x 107, A coarse grid of 54,000 points was generated
by taking every other grid point from the fine grid. A
medium density grid was generated by using the same cir-
cumferential distribution of grid points as the coarse grid
and by increasing the number of points in the normal di-
rection by 50 percent. This resulted in a grid with a total

of 83,000 points. These three sets of grids used only five
zones and did not include the embedded zone shown in
Fig. 2. Results of computations on these grids showed
that there was not much grid dependence in the velocity
profiles for the 8 degree angle of attack case. An example
is shown in Fig. 4, which shows the velocity profiles at
station 8.
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Fig. 3 Difference in C; between wind-tunnel wall
boundaries and a free-air outer boundary for ge-
ometry A and Re=9 million.
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Fig. 4 Velocity profile at station 8, Alpha=8.0,
geometry A, Re=9 million, for SA model showing
effect of grid resolution.

At an angle-of-attack of 21 degrees, the computations
did show a grid dependence. Velocity magnitude along
lines normal to the local surface at stations 3, 5, and 8 are
plotted in figs. 4a, 4b, and 4c, respectively. At station 3,
near the leading edge of the flap, the different grid solutions
are quite similar, but further along the flap chord it can
be seen that the fine grid solution is in better agreement
with the experimental data in the slat wake region than the
coarser grid solutions. In order to get sharper resolution
of the velocity profiles without paying the cost of the fine
grid, an embedded grid was added in the area above the
flap (see Fig. 2) where the greatest difference between
the different grid solutions was observed. The embedded
grid has a grid density equivalent to the fine grid in this



area above the flap. Using the original coarse grid plus
the embedded grid resulted in velocity profiles which come
very close to matching those of the fine grid. This new six-
zone grid used a total of 68,000 grid points, or less than
one-third as many points as the fine grid. The velocity
profiles of these new embedded grid results are also shown
in figs. 4a, 4b, and 4c.
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Alpha=21.0, geometry A, Re=9 million, for SA
model showing effect of grid resolution.

A defect correction method was utilized in conjunction
with the embedded grid. This method has been recently
added to the INS2D code and is detailed in a paper by
Rogers and Pulliam'” and will only be briefly described
here. Typically, embedded overset grid techniques process

and pass information only at grid boundaries. In the defect
correction approach, error corrections at all overlapped in-
terior points are injected from the fine grid onto the coarse
grid. This injection enhances the overall accuracy of the
coarse grid solution.

Computed Results

Experimental pressure coefficient (C, ) data, velocity
profiles, and limited skin friction data are available for
three angles of attack: 8, 16, and 21 degrees. At each of
these angles, data is available for geometry A at Reynolds
numbers (Re) of 5 and 9 million and geometry B at Re=9
million. In addition, experimental C; , drag coefficient
(Cq ), and pitching moment coefficient (Cy, ) for a range
of angles of attack up to maximum lift are available for
geometry B and Re = 9 million. The freestream Mach
number was 0.2 for all experimental data.

The computed and experimental surface C, distribu-
tions for geometry A and Re = 9 million are shown in Fig
6. Data is shown for the slat, main element, and flap at
angles of attack of 8, 16, and 21 degrees. In general, the
agreement between the C), data of the experiment and all
four of the turbulence models is quite good. The biggest
discrepancies occur for the lower angle of attack, partic-
ularly on the slat and the flap. This directly correlates
to the amount of separation on the flap: the greater the
region of separation on the flap, the lower the lift on the
flap and slat. The SST results show the greatest evidence
of separation on the flap: a flattening of the Cp distri-
bution near the trailing edge. The SST results also show
the best agreement in the pressure on the upper surface of
the slat. The only other notable aspect of these €, plots is
that the DM model has trouble matching the experimental
pressures on the flap at 21 degrees angle of attack.

Figures 7, 8, and 9 present velocity profile data for the
Geometry A, Re = 9 million case at angles of attack of 8,
16, and 21 degrees, respectively. These figures plot veloc-
ity magnitude along lines normal to the local surface at
stations 1, 3, 5, and 8 as shown in Fig 1. In general, the
agreement between the experimental and computational
velocity profiles is fairly good. One of the biggest differ-
ences between the computations is observed at the 8 de-
gree angle of attack: the velocity defect of the slat wake
is very small at the station 1 profile in the experimental
data, whereas all the computations predict a much larger
defect. This is a bit larger in the DM and SST results, and
less so in the BB and SA calculations. The SST model
shows the most amount of flap separation at the 8 degree
case, which is in apparent disagreement with the experi-
mental velocity. Remember, however, that the SST model
showed the best agreement with the experimental surface
pressures at this angle of attack. It is difficult to conclude
which model is giving the best results overall, since none of
the models agree completely with the experimental results,
and differences between different computations are small.



Cp

Cp

Cp

115

115

Sat 8 4 =
-3 c e Main [\ . Exp
---- SA e Exp -3 R BB
s ssT 6 BB A - SA
H . . _._. DM .- SA ) SST
“ ST T ssT ---- DM
N\ . DM 2 b
-4 r N
o o
, \ |
I a = - i
oy -2 e S v
0 o e ~ , o
3 ° 0
* 0 { R
1 Rt &x*’”’” ny, |-
-0.100 -0.075 -0.050 -0.025 0.000 0.025 01 02 03 04 05 06 07 08 090 095 100 105 110
x/c x/c x/c
Fig. 6a Alpha==8 degrees
-10 -10 -4
Flap
sl
X atEx 5 + B
-8 My -8 31 LT\ os
& SST| e Exp N
6 ‘x- . om 6 \. — 22 B’ N --—- DM
\ : o ST o f ’
A 5 —._. DM
-4 MMM o -4 \\ © -1
ﬁ S |
4 o ¢ \ hd ‘N‘fwr\ 0 ?
0 * ’/ | 0 { SR DU SR Sy
e s £\ S . 1
-0.100 -0.075 -0.050 -0.025 0.000 0.025 01 02 03 04 05 06 07 08 090 095 100 105 110
x/c x/c x/c
Fig. 6b Alpha=16 degrees
-14 ‘ -12 -4
Flap
12 od | . Ex
12 ) -10 3 BS
\ .- SA
-10 \ Slat . SST
,:A\. e Exp -8 Main ———- DM
8 of ) BB \ e Exp -2
1 - SA BB
\\ﬁ o\ SST a -6 \\ .. SA a
) —._. DM ssT
6 Ot © 4 . —-—- DM © -1
4 7 2 R S 0 B
2 4 \ “Pwi\‘-r-»-—.r-..,_'— e ?
A ° 0 PR
0 S ~.'::4o ——— N N 1
-0.100 -0.075 -0.050 -0.025 0.000 0.025 01 02 03 04 05 06 07 08 090 095 100 105 110
x/c x/c x/c

Fig. 6¢c Alpha=21 degrees

Fig. 6 (), surface data for Geometry A, Re=9 million

115



0.10 ;
Station 1 \.:
0.08 o  Experiment i
BB t
% \
SsT e
0.06 --—- DM 1
o i
0.04
0.02 :
i
0.0 05 1.0 15 20
Velocity Magnitude
0.10 ,
Station 3
0.08 o  Experiment ",y,
BB .
o k
SST !
0.06 --—- DM 4
o %
0.04 A4
0.02 4\
0.00 : ~
0.0 05 1.0 15 20 25
Velocity Magnitude
0.15
Station 5
e Experiment
BB
0.10 - SA
ssT
o --—- DM
=
0.05 G
0.00
0.0 05 15
Velocity Magnitude
0.20
Station 8 .
015 . E)éperlmmt j
_ SA P
o --—- DM
= 010
0.05
0.00
0.00 0.25 0.50 0.75 1.00 125

Velocity Magnitude

Fig. 7 Velocity profiles for Alpha==8 degrees, Ge-
ometry A, Re=9 million

0.10
Station 1 :.
0.08 o  Experiment M
BB .
- SA o
ssT :
0.06 ---- DM i
() H
= / H
0.04 gt
0.02
0.00 e
0.0 05 1.0 20
Velocity Magnitude
0.10
Station 3
0.08 o  Experiment
BB it
—--- SA 7%
ssT 7t
0.06 —-—- DM g3
c N
0.04 %‘\
0.02 Z
0.00 >
0.0 0.5 1.0 15 20 25
Velocity Magnitude
0.15 H
Station 5 §’I‘
o Experiment A
BB :
0.10 ---- SA
SsT
o --—- DM
=
0.05
0.00
0.0 05 1.0 15
Velocity Magnitude
0.20
Station 8
015 . E)éperlmmt 5
_ SA L
asT .
o
= 010
0.05
0.00
0.00 0.25 0.50 0.75 1.00 125

Velocity Magnitude

Fig. 8 Velocity profiles for Alpha=16 degrees, Ge-

ometry A, Re=9 million



0.10 T
Station 1 \E
0.08 o Experiment ¢
BB b
& :
SST 78
0.06 ---- DM )
(8] Rl
= o
0.04
0.02
0.00
0.0 05 10 20
Velocity Magnitude
0.10 T
Station 3 )E;
0.08 o Experiment A1
BB N/
- SA /N
ssT e
0.06 ---- DM RS
o N
p ...\ \!
0.04 g
0.00
0.0 05 1.0 15 2.0 25
Velocity Magnitude
0.25 :
Station 5 E{
o Experiment H
020 BBpenmen :
- SA o
SssT Y
--—- DM w5,
o 0.15 .j
= 2
0.10
0.05 S e
e f.'...
0.00
0.0 0.5 10 15
Velocity Magnitude
0.25
Station 8
o Experiment
0.20 BBpenmen
- SA
ssT
0.15 ---- DM
o
0.10 /"/,g,/‘} = e
0.05 WL
0.00 T
0.00 0.25 0.50 0.75 1.00 1.25

Velocity Magnitude

Fig. 9 Velocity profiles for Alpha=21 degrees, Ge-
ometry A, Re=9 million

The experimental measurements of the skin friction co-
efficient (Cy ) are available on only a few points on the
upper surface of the main element and flap. These data
points are plotted along with the computational results in
Fig. 10 for angles of attack of 8, 16, and 21 degrees for
geometry A and Re = 9 million. The skin friction is fairly
well predicted by all but the DM model. The SST mod-
els consistently predicts the highest values, giving it the
best agreement with the experiment on the flap and the
main-element trailing-edge.

Alpha=8

e Exp !
— BB I\
0.02 ---- SA

—.—- DM

Cf

0.01

0.00}

x/c

Alpha= 16
e Exp
—— BB
0.02 ---- SA
SST
---- DM

Cf

0.01

0.00 s \1

x/c

Alpha=21
e Exp
—— BB
0.02 ---- SA
SST
---- DM

Cf

0.01

0.00=

x/c

Fig. 10 Skin friction coefficient for Geometry A,
Re=9 million



Figures 11, 12, and 13 plot the lift coefficient (C; )
and the pitching moment coefficient (C), ) versus angle-of-
attack, and the drag coefficient (Cy ) versus Cj for the com-
putations and the experiment for geometry B and Re=9
million. The lift values are all quite close up to 16 degrees,
as anticipated by the €, results. None of the models agree
with the experimental value of maximum lift. This is most
likely because the experiment does start to undergo some
3D effects at the very high values of lift. The pitching
moment coefficient predictions are very good for the SST
model at the lower angles of attack, although they differ
little from BB and SA. The trend of increasing slope in
Cyn, between alpha=10 and 16 degrees is not predicted by
any model. Cy is not well predicted by any model. In the
computations the drag is computed by integrating the pres-
sure and skin friction forces on the surface. This method
has been shown'® to be less accurate than other methods
(such as wake integration), and may be the cause of the
large errors in the computed Cy .
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Fig. 11 C; versus angle of attack for geometry B
and Re=9 million

The SA model does predict a dramatic loss of lift at
23 degrees angle of attack. Figure 14 shows velocity pro-
files for this case at stations 3, 5, and 8. It shows that
the flow over the flap is fully attached, and that the wake
of the main element has grown dramatically to the point
that a large region of this flow off the body has become
nearly stagnant. Figure 15 shows velocity magnitude con-
tours of this calculation at angles of attack of 21 and 23
degrees, showing the difference between the pre- and post-
stall flows. The fact that the SA model predicts stall before
the other models may be due to the additional transition
terms in the SA model.
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Fig. 12 C,, versus angle of attack for geometry B
and Re=9 million
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Geometry Change

The ability of the code to predict the difference in the
flow field due to a change in the flap rigging is examined.
Figure 16 shows plots of the quantity ACj , defined as the
C for geometry A minus the C; for geometry B. This dif-
ference was computed for angles of attack of 8, 16, and 21
degrees, and a Reynolds number of 9 million. The experi-
mental data was available for several other angles of attack
as well. Notice that the experiment has two values at 16

degrees: the experimental tests for geometry B produced
two different data points. The trend of the computations
is in agreement with the experiment: both show geometry
A producing more lift at the moderate angles of attack,
and geometry B produces more lift at the higher angles
The SST and SA calculations produce the best fit with
the experimental data.
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Reynolds Number Effects

Figure 17 shows a plot of the difference in the lift co-
efficient between the Reynolds number of 9 million and 5
million for geometry A. The computations were made for
just the four angles of attack of 8, 16, 19, and 21 degrees.
Computations and the experiment show that the 9 million
case produces more lift.

Computing Time

The computing time utilized by the code varies some-
what from one turbulence model to the other. The BB
and SA models have a single differential equation whereas
the SST and DM have two differential equations. The
SST model converges best when 10 line-relaxation sweeps
are used during one iteration, the others work best when
only 2 sweeps are used. Thus the SST model takes more
time per iteration. Figure 18 shows the maximum resid-
ual of the mean flow equations versus iteration number for
geometry A at 21 degrees angle-of-attack. There are nu-
merous oscillations occurring in the residual. These are
due to the behavior at the zonal interfaces as information
travels between zones, as well as the fact that the flow
tends to be unsteady at the thick trailing edge of the flap.
This unsteadiness causes the high-frequency oscillations in
the lift as it converges to a steady-state as can be seen in
Fig. 19. The solutions are considered converged when the
maximum residual has dropped over 5 orders of magnitude



and the lift coefficient has converged to 4 significant digits.
The BB and SA runs have met this critera in 600 itera-
tions, which required 16 minutes of CPU time on a Cray
C90 (or 27 minutes on a CRAY YMP). The SST and DM
take longer to damp out the oscillations in the lift coeffi-
cient. They each take 900 iterations to reach convergence
in this case. This required 32 minutes on a CRAY C90 for
the SST model, and the DM calculation used 27 minutes
of CRAY C90 CPU time.
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Summary and Conclusions

Computations of the flow over a three-element airfoil
were carried out with an incompressible viscous flow solver
and overset grids. Four different turbulence models were
used for each computational case. The surface ), data
shows very little difference in the flow solutions of each of
the models. The velocity profiles do reveal some differences
in the computations, particularly in the spreading rates of
the wake regions of the flow. The SA model appeared
to have the most amount of mixing in the wakes, while
the SST model consistently showed the greatest amount of
velocity defect in the wakes. For the most part the pre-
dictions of the SA; SST, and BB models are similar. The
DM model is the least mature of the models and will re-
quire further development. The correct trends in lift were
predicted for changes in the flap gap and in the Reynolds
number by all the models. The SA model was the only
one to show a stall behavior below an angle of attack of
25 degrees, this may be due to its treatment of transition.
In general, the difference between the predictions of the
different models was less than the difference between the
computational and experimental data.

The most significant difference between the computa-
tional results and the experimental data is in the slat wake
at the lower angles of attack. The grid resolution study
showed that this difference did not decrease with increased
grid resolution. However, a different grid topology around
the underside of the slat may help concentrate more points
in the shear layer of the separated region of this flow, and
may improve the results. With the results presented thus
far, it is yet to be determined if the discrepancy in the slat
wake is a problem with the turbulence models, with the
grid topology, or some other factor.

Given the complexity of the multi-element airfoil geom-
etry and the surrounding flow field, it would be wisest to
proceed with further development and tuning of the turbu-
lence models based upon simpler building-block flow fields.
This will be the direction of work in the immediate future,
which will include testing the current turbulence models
against ongoing experiments involving flow over a single



airfoil and the flow of a wake through an adverse pressure
gradient.
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